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Abstract A study was conducted to gain insights into the use of geostationary satellite-based indicators
for characterizing and identifying growing cumulus clouds that evolve into severe weather producing
convective storms. Eleven convective initiation (CI), 41 cloud top temperature–effective radius (T-re), and 9
additional fields were formed for 340 growing cumulus clouds that were manually tracked for 2 h and
checked for association with severe weather to 2–3 h into the future. The geostationary satellite data were at
5min resolution from Meteosat-8 on six convectively active days in 2010, 2012, and 2013. The study’s goals
were to determine which satellite fields are useful to forecasting severe storms and to form a simple model for
predicting future storm intensity. The CI fields were applied on 3×3 pixel regions, and the T-re fields were
analyzed on 9×9 and 51×51 pixel domains (needed when forming T-re vertical profiles). Of the 340 growing
cumulus clouds examined, 34 were later associated with severe weather (using European Severe Weather
Database reports), with the remaining being nonsevere storms. Using a multivariate analysis, transforming
predictors into their empirical posterior probability, and maximizing the Peirce skill score, the best predictors
were T1451 (51× 51 pixel T, where re exceeds 14μm), TG9 (9× 9 pixel glaciation T surrounding a growing cloud),
and ReBRTG51 (51× 51 pixel re at the breakpoint T in the T-re profile). Rapid cloud growth prior to severe storm
formation leads to delayed particle growth, colder temperatures of the first 14μmparticles, and lower TG values.

1. Introduction

As outlined in Mecikalski et al. [2015], a significant amount of effort has been spent on obtaining highly accurate
short-term forecasts of the initiation of convective storms in light of the high impact that poor thunderstorm fore-
casts have on various activities (e.g., air travel) and public safety. An ideal platform for providing an early warning
capability for the initiation of convective storms is the 5–15min resolution of geostationary satellite observations
[Purdom, 1976, 1982; Roberts and Rutledge, 2003;Mecikalski and Bedka, 2006; Rosenfeld et al., 2008a;Mecikalski et al.,
2010a, 2010b, 2015]. The Geostationary Operational Environmental Satellite (GOES), Feng-Yun, Multifunctional
Transport SATellite, Meteosat, and Himawari offer near-global 55°N to 55°S coverage with 500m to 4km spatial
resolution in visible and near-infrared channels and at 2–4km in infrared (IR) channels. A number of methods
and algorithms exist to process these satellite data in real time to monitor convective clouds [Merk and Zinner,
2013], convective storm initiation (CI) in the 0–1h time frame [Roberts and Rutledge, 2003; Mecikalski and Bedka,
2006; Mecikalski et al., 2010a, 2010b, 2015; Walker et al., 2012; Nisi et al., 2014], or severe storm initiation [Lensky
and Rosenfeld, 2006; Rosenfeld et al., 2008a; Cintineo et al., 2014]. The accuracies of CI prediction methods are in
the 70–85% range or slightly higher depending on the environment [Mecikalski et al., 2015].

Emphasis needs to be placed on extending the CI nowcasting algorithms by integrating satellite, radar,
numerical weather prediction (NWP) models, and other data sets (e.g., lightning) to provide forecasts with
increased lead time to high-impact events such as severe storms. Fritsch et al. [1998], Curran et al. [2000],
Evans and Ducot [2006], andWolfson and Clark [2006] have quantified the impacts that strong thunderstorms
have on travel, air traffic, infrastructure, and society. Changnon [2001], Brooks et al. [2003], Brooks and Dotzek
[2007], Dixon et al. [2011], and others have identified the costs of convective weather in terms of storm-
related hazards (hail, high winds, flooding, and tornadoes), which motivates the need for more precise early
detection methods for severe thunderstorms, using all available observational data sets. Along these lines,
Hartung et al. [2013] examined how GOES 10.7μm channel cloud top cooling rates correlate with later time
rainfall intensity and large hail. Cintineo et al. [2013] determined the distributions of GOES satellite-retrieved
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cloud properties in severe and nonsevere storms, while Cintineo et al. [2014] combined GOES cloud properties,
radar, and NWP fields to forecast severe storm potential. These studies using GOES imagery have shown that
severe storms can develop very rapidly, from small cumulus clouds to a cumulonimbus producing heavy rainfall,
damaging wind, hail, and/or a tornado occurring in as little as 1h [Cintineo et al., 2013]. Similarly, rapid cumulus
cloud top cooling during CI is correlated with severe weather [Hartung et al., 2013; Cintineo et al., 2013]. Lensky
and Rosenfeld [2006] and Rosenfeld et al. [2008b] have demonstrated that key cloud topmicrophysical signatures
coupled with rapid cloud development provide substantial indication of severe weather occurrence.

The methods by Rosenfeld et al. [2006, 2008a] and Lensky and Rosenfeld [2006] have demonstrated a correla-
tion between the temperature of a cumulus cloud’s top (TTOP) and particle effective radius (re), as functions of
aerosol contents and updraft strength, developing TTOP versus re diagrams as a function of altitude. The TTOP-
re [or T(z)-re(z), “T-re”] diagrams are formed using an ensemble of clouds in various stages of development
across the region. In these studies, it was proposed that relative updraft strength (with respect to surrounding
updrafts), and hence the vigor of the new convective storms, can be estimated from cloud top re values, and
hence, one can predict storm intensity using T-re metrics. In this study, we assume that the aerosol distribu-
tion (or cloud concentration nuclei) is generally similar across a meso-β scale (25–250 km) region analyzed for
severe storm development within a 1–2 h time frame. These metrics include the glaciation temperature (TG),
the re at TG, and other parameters that quantify the profile of TG versus re (as listed in Table 1). Figure 1 shows
T-re diagrams as a function of updraft intensity. Although CI algorithms [Mecikalski et al., 2015] provide pre-
dictions of convective rainfall of ≥35 dBZ intensity, until now they do not provide estimates of which CI events
will lead to severe convective storms. Included with the CI interest fields as described in previous studies
[Mecikalski and Bedka, 2006; Mecikalski et al., 2010a, 2010b] are satellite-retrieved cloud parameters, such as
re, optical depth, and indicators of cloud top phase, which have been shown to add skill to the CI nowcasts
by improving understanding of the physical processes important to the CI processes, such as increasing cloud
depth over time, updraft integrity (width and depth), and glaciation related to precipitation production
[Mecikalski et al., 2011].

Soundings of moisture and especially wind shear from NWP models complement satellite-observed cloud
top temperature information and inferred in-cloud dynamics by helping to identify favorable environmental
conditions for the formation of severe convection. Cintineo et al. [2013] and Mecikalski et al. [2015] have
recently shown how Bayesian probability methods, and machine learning (logistic regression [Hosmer and
Lemeshow, 1989] and random forest [Pal, 2005; Diaz-Uriarte and de Alvarez, 2006; Williams et al., 2008;
Williams, 2014]), respectively, can be applied to convective storm nowcasting, which emphasizes the value
in combining information from various sources. Similarly, within the AutoNowcaster, a combination of
interest field thresholds and fuzzy logic membership functions from several input data sources generate
combined likelihood fields that are integrated into CI nowcast zones [Mueller et al., 1993, 2003].

The goal of this study is to evaluate hitherto two Meteosat-8 satellite-based methods in a combined fashion
for predicting the initiation [e.g.,Mecikalski and Bedka, 2006;Mecikalski et al., 2010a] and the near-term inten-
sity of convective storms [Rosenfeld et al., 2008a], forming then a subset of predictors and a simple model that
can be used to predict in advance the initiation of locally intense or severe convective storms, as classified by
the European Severe Weather Database (ESWD; http://www.eswd.eu) [Dotzek et al., 2009]. This study then
represents one of the first attempts to apply such a methodology over the European territory.

Sixty-one candidate predictor variables (Table 1) are developed from 5min resolution Meteosat-8 Spinning
Enhanced Visible and Infrared Imager (SEVIRI) observations over the 0–45min time frame of cumulus cloud
development. These cumulus cloud-focused parameters are analyzed on a per-storm basis and compared to
mature storm behavior and severe weather reports 2–3 h into the future. In the end, a much reduced list of
predictors is developed, followed by procedures for applying them in a simple prediction system. The study’s
outcome demonstrates the value of satellite observations in a manner that extends nowcasting (0–3 h short-
term forecasts) for forecasters of severe convective storms.

The paper proceeds as follows: section 2 provides a more in-depth background on the CI and T-re algorithms,
while section 3 describes the main data sets used in the study and also outlines the project methodology and
analysis techniques employed herein. Section 4 shows the results, and section 5 discusses the main findings
and concludes the paper.
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Table 1. The List of All 61 Predictor Variables That Were Collected for This Studya

Interest Field Description

Date YYYYMMDD
Storm Number of tracked storm
Map Frame number in the storm tracking (1 to 25, for 0 to 2 h every 5min)
Hour Decimal hour
Latitude Latitude of the center of the matrix (decimal degrees)
Longitude Longitude of the center of the matrix (decimal degrees)
iCENTER I coordinate of the center of the flagged storm
jCENTER J coordinate of the center of the flagged storm
Radius Equivalent circle radius of the cell in number of pixels

T-re fields: (storm—9 × 9 pixels) and (environment—51 × 51 pixels)
arithmetic average

TTOP Storm and environment lowest top temperature (°C)
TG Storm and environment glaciation temperature (°C)
TBRTG Storm and environment T of breakpoint of the T-re line (°C)
T14 Storm and environment T where re exceeds 14 μm (°C)
TB Storm and environment T of cloud base or warmest cloudy pixel (°C)
dSLOPE*10 Storm and environment slope of lower part minus slope of upper part of the T-re line

(μm/°C)
ReTOP Storm and environment re at TTOP51 (μm)
ReGLAC Storm and environment re at TG51 (μm)
ReBRTG Storm and environment re at TBRTG51 (μm)
Exp/10 Storm and environment expansion rate of the cloud top, as defined by the coldest 10 T°C

(pixel2/5min)
fExp*10 Storm and environment fractional expansion rate, defined by Exp9 cloud top area (unitless)
CORTBTG Storm and environment correlation of the T-re points (unitless)
S (cumulative) Storm and environment—cumulative score environment: SdSLOPE51 + STG51 + STBR51

+ SREG51 + SREBR51
S (multiply) Storm and environment—multiplied score environment:

SdSLOPE51 × STG51 × STBR51 × SREG51 × SREB51
SdSLOPE Storm and environment—break in the slope in μm/°C. Smaller> linear and more severe.

dSlope51 × 10 = 0> 1; 5> 0
STG Storm and environment—colder TG51 indicates more severe storm. TG51 =�40°C> 1; �

25> 0
STBR Storm and environment—colder temperature of the breakpoint below TG51 is more

severe. TBRTG51 =�38C> 1; �23> 0
SREG Storm and environment—smaller ReGLAC51 is more severe. ReGLAC51 <20 μm> 1;

40 μm> 0.25
SREBR Storm and environment—smaller ReBR51 is more severe. ReBRTG51 <20 μm> 1;

40 μm> 0.25
S (fExp51) Region—larger cloud top fractional expansion is more severe. fExp51 × 10 = 0.333> 1;

0> 0
S (overshoot51) Region—deeper overshoot is more severe. 6.2–7.3 μm= 2> 1; 0> 0
COOLING9 Cell (9 × 9) cooling rate (°C/5min)

Convective initiation fields: cloud scale (3 × 3 pixels) coldest pixel
6.2–7.3 μm TB 3 × 3 pixel brightness temperature difference of 6.2–7.3 μm (°C)
8.7–10.8 μm TB 3 × 3 pixel brightness temperature difference of 8.7–10.8 μm (°C)
3.9 μm reflectance 3 × 3 pixel 3.9 μm reflectance (unitless)
Tri-Spectral TB 3 × 3 pixel brightness temperature difference of [(8.7–10.8 μm)� (10.8–12.0)] (μm)
12–10.8 μm TB 3 × 3 pixel brightness temperature difference of 8.7–10.8 μm (°C)
5min 10.8 μm trend 3 × 3 pixel 5 min 10.8 μm cloud top cooling rate (°C/5min)
5min 6.2–10.8 μm trend 3 ×3 pixel 5 min 6.2–10.8 μm channel difference trend (°C/5min)
5min 8.7–10.8 μm trend 3 × 3 pixel 5min 8.7–10.8 μm channel difference trend (°C/5min)
5min Tri-Spectral trend 3 × 3 pixel 5min trispectral channel difference trend (°C/5min)
5min 6.2–7.3 μm trend 3 × 3 pixel 5min 6.2–7.3 μm channel difference trend (°C/5min)
5min 3.9–10.8 μm trend 3 × 3 pixel 5min 3.9–10.8 μm channel difference trend (°C/5min)

aThe 47 fields that were analyzed for this study are highlighted in bold. Field definitions and descriptions are
provided.
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2. Satellite Analyses of
Growing Cumulus Clouds

The main hypothesis guiding this
study is that time series observed
only from geostationary satellite
cloud top information of early stage
growing cumulus clouds can be used
to identify forthcoming severe
weather. Therefore, in the CI and T-re
fields, there should be a clear delinea-
tion between growing convective
clouds that later produce severe
weather, as compared to those
clouds that do not. Furthermore, use
of a small number of CI and T-re fields
should be valuable within a statistical
model that identifies forthcoming
severe weather events.

2.1. Convective
Initiation Nowcasting

The study by Mecikalski and Bedka
[2006] outlined the concepts of the

GOES-R CI algorithm, with further refinements described in Harris et al. [2010], Mecikalski et al. [2010a,
2010b],Walker et al. [2012], andMecikalski et al. [2015]. GOES-R CI identifies precursor signals of CI of cumulus
clouds within sequences of 500m to 1 km resolution visible and 2–4 km IR imagery from Meteosat, GOES, or
the forthcoming GOES-R era instruments and measures three physical components of growing convective
clouds toward making a nowcast of CI valid over a 1 h period: cloud depth, cloud growth rate, and cloud
top glaciation. CI is defined as the first detection of reflectivity ≥35 dBZ (a radar identified convective rainfall
rate) at the �10°C level in convective clouds [Browning and Atlas, 1965; Wilson and Schreiber, 1986; Wilson
et al., 1992; Wilson and Mueller, 1993; Mueller et al., 2003]. CI nowcasts are made possible by the coincident
use of three components of GOES and Meteosat data: (1) a cumulus cloud mask at 1 km resolution
[Berendes et al., 2008], (2) satellite-derived mesoscale atmospheric motion vectors for tracking individual
cumulus clouds [Bedka and Mecikalski, 2005; Bedka et al., 2009], and (3) IR brightness temperature (TB) and
multispectral band differencing time trends. Despite the central wavelengths of channels differing between
GOES andMeteosat, the main attributes measured by these instruments as listed above will be captured, with
the exception thatMeteosat affords a more robust method for measuring cloud top glaciation given the pre-
sence of the 8.5μm channel [Mecikalski et al., 2010a]. By 2012 the GOES-R CI algorithm routinely used 15
National Oceanic and Atmospheric Administration (NOAA) Rapid Update model and 10 GOES satellite fields
in a logistic regression model, forming a 0–100% probability of CI per each convective cloud object [Walker
et al., 2012;Mecikalski et al., 2015], and is therefore a day-night multisensor approach. Presently, the algorithm
uses Algorithm Working Group Cloud Height Algorithm satellite-derived cloud parameters [Heidinger and
Pavolonis, 2009; Walther et al., 2011; Walther and Heidinger, 2012] to detect CI beneath cirrus [Mecikalski
et al., 2013] and enhance the nighttime detection of growing cumulus clouds [Mecikalski et al., 2011].

The present study is along the lines of Cintineo et al. [2014], however focused entirely on satellite observations
from European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat-8 when
attempting to delineate percussive signatures for severe and nonsevere events. Unlike Cintineo et al. [2013,
2014], the present study exploits the T-re methodology, as originally developed and used to help identify
severe weather occurrence by Rosenfeld et al. [2008b]. As noted, one main goal then is to provide an assess-
ment of combined CI and T-re field characteristics for known weak to severe convective storms, which then
may be used within CI nowcast systems, especially in light of what GOES-R will soon offer (as similar to
Meteosat-8). This present study draws together satellite-based CI and a number of T-re fields in a manner
not done previously.

Figure 1. A conceptual model adapted from Rosenfeld et al. [2008a] of the way
T-re relations of convective clouds are affected by enhanced updrafts to extreme
values. The vertical green line represents the precipitation threshold of
re=14μm [Rosenfeld and Gutman, 1994]. The horizontal line at T=�38°C
represents the homogeneous freezing isotherm. (a) Microphysically maritime
clouds with low and warm bases and small concentrations of cloud concentra-
tion nuclei (CCNs) and (b) continental clouds with high CCN concentrations or
high and cold bases. In reality most cases occur between these two end types.
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2.2. T-re Framework

Rosenfeld et al. [2008a] provided the scientific basis and background for a conceptual model that facilitates
the detection of the vigor of convective clouds and storms by remote sensing from satellites, based on the
retrieved vertical profiles of cloud-particle re and thermodynamic phase. High updraft speeds in convective
clouds, formed in conditions of high convective available potential energy (CAPE; ≥3000 J kg�1), help sustain
the presence and growth of large hailstones. Wind shear provides additional energy for organizing and sus-
taining supercell storms and squall lines, well known to produce damaging winds and recirculate large hail or
produce widespread strong downdrafts, downbursts, and intense gust fronts. The respective roles of CAPE
and 0–6 km vertical wind shear have long been known as the main predictors for severe convective storms
[Rasmussen and Blanchard, 1998; Hamill and Church, 2000; Brooks et al., 2003].

Cloud particles have been observed to remain smaller and freeze at colder temperatures in stronger updrafts,
constituting a satellite-based severe storm microphysical signature [Rosenfeld et al., 2006], with a conceptual
example shown in Figure 1, as adapted from Rosenfeld et al. [2008a] and as validated by aircraft measure-
ments [e.g., Rosenfeld and Woodley, 2000]. Use of severe storm microphysical signatures, as retrieved from
15min resolution imagery of GOES–11/–13, has already shown considerable predictive skill for cloud clusters
that are prone to develop into severe storms. Key cloud top microphysical features have been observed for
convective clouds, often well before the initial development of an organized storm, with a forecast lead time
of up to 2 h to the actual occurrence of severe weather when tested operationally at the NOAA Storm
Prediction Center (SPC) [Rosenfeld et al., 2008b]. It is important to note that application of “water-only re” to
predict the probability of specific clouds to become severe (as done in Cintineo et al. [2013], instead of apply-
ing re of both water and ice to the prestorm cloud cluster, misses most of the long lead-time predictive skill.

In Rosenfeld et al. [2008b], a method was developed to provide satellite, microphysically based, “early alerts”
(EAs) of severe convective storms. The objective was to predict when and where severe weather is most likely
to occur 1–2 h prior to the actual event. As such, an EA came after a Severe Weather Watch was issued by the
SPC and before a National Weather Service Forecast Office issued a warning when the event is under way. An
evaluation of the EA method was done at the SPC in April, May, and early June 2008. GOES–11 and –12multi-
spectral imagery data were used, with the focus on severe storms. The results showed that the EA method
was successful in flagging imminent severe weather events on a scale of 100 × 100 km (104 km2), which
was an average of 1–2 h before they occurred. It was found that the EA methodology provided valuable sup-
porting evidence that severe weather was imminent from a growing convective cloud and therefore was use-
ful in the SPC forecasting environment [Rosenfeld et al., 2008b]. This suggests that the T-re-based EA
methodology is a potentially valuable tool for those tasked with issuing watches and warnings for severe
convective storms. Unlike the SPC demonstration, the present study evaluated the potential value that T-re
fields have in nowcasting severe storms using Meteosat observations, at a similar 5min time frequency as
done for the CI fields.

3. Data and Processing Methodology

Table 2 lists the “growing cumulus cloud storm” data that were collected over Europe and comprise the main
data set in this study. A total of 6 days were selected, with 340 convective storms cataloged, each one having
25 time frames (25 × 5min = 2 h). Each 5min time will be referred to here as a “case.” Table 2 also lists the
number of growing cumulus cloud/storm events that were cataloged, along with the number of “severe”
storms on a given day or one associated with ESWD-observed severe weather. Only “QC2” quality reports
(defined as “severe event fully verified”) from the ESWD were used in this study. Table 2 also lists the general
region in Europe where the storms occurred. Figures 2a–2f show an example of nonsevere (09:44–10:14 UTC
15 August 2010; Figures 2a–2c) and severe (12:59–13:29 UTC 29 July 2013; Figures 2d–2f) storms in 15min
resolution Meteosat observations. Related to the two storms shown in Figures 2a–2f, Figures 3a and 3b
present the 5min trends in five T-re and the Tri-Spectral fields (see Table 1) over the first 30min of cumulus
cloud development. The clear differences seen between the growing cumulus clouds for the eventual “weak”
and severe storms include (1) much warmer glaciation temperatures (TG9) from 0 to 25min for the weak
storm, indicating the lack of a rapidly developing cumulus cloud; much colder TG9 temperatures are seen
for the severe storm; (2) colder T1451 temperatures (by 3–5°C) for the severe versus weak storm; (3) larger par-
ticle effective radius values at the temperature of the breakpoint of the T-re line (Table 1) in the severe storms
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that decrease over time. The weak
storm in contrast shows smaller
ReBRTG51 values with no downward
trend; (4) much lower environmental
cloud tops (TTOP51) for the severe ver-
sus weak storm and distinctly more
rapid cloud top cooling for the severe
storm compared to the weak storm
as seen in the TTOP9 field. More will
be said below related to the TTOP51,
TG9, T1451, and ReBRTG51 fields; and
lastly, (5) the Tri-Spectral field shows
a jump to positive values between

25 and 30min of cloud growth, denoting cloud top glaciation [Mecikalski et al., 2010a].

Additional details are provided below on how a severe weather observation was associated with a given CI
event, while CI was determined using radar data from the Opera radar network over Europe. For this project,
5min resolution Meteosat-8 IR channel observations were collected and processed into 11 CI fields, 41 T-re
quantities, and 9 other variables (e.g., date, time, latitude, and longitude). Table 1 lists the 61 fields that were
initially evaluated.

From Meteosat SEVIRI, channels 1.6, 3.9, 6.2, 7.3, 8.7, 10.8, 12.0, and 13.4μm were used. The derived CI fields
focused on cumulus cloud development in the 0–45min period (ten 5min periods), as clouds grew from the
“fair weather” or cumulus mediocris to more towering cumulus, cumulus congestus, and cumulonimbus, as
done in prior studies [Mecikalski et al., 2010a, 2010b]. For all 340 storms, CI occurred by the 45min time of
analysis. In this way, a total of 61 fields for each of the 340 studied clouds for 10 time frames (from 0 to
45min every 5min in Meteosat-8 data) were collected to form our testing and training databases as used
in the statistical model development. Each of the clouds were subsequently tracked and processed onward
from 45min to 2 h over 5min periods, for a total of 25 5min times from the CI stage/early cumulonimbus
cloud, and then related to possible severe weather (high winds, large hail, and tornadoes) 2–3 h after the
initial cumulus clouds formed during the CI stage of a storm. Tracking was maintained through 3 h past
the CI stage in an effort to determine if severe weather was produced by a given storm. From the 2–3 h time,

Table 2. List of Severe Weather Days Analyzeda

Date Cases Severe Events Location

15 August 2010 143 7 Western and central Europe
1 July 2012 26 2 Western and central Europe
7 July 2012 50 7 Western and central Europe
21 July 2012 27 4 Western and central Europe
20 June 2013 62 12 Central Europe
29 July 2013 32 5 Central Europe
Totals 340 34

aA total of 340 growing convective cloud/storm events were analyzed.
The rough regions in Europe are listed for each day. The number of severe
events is listed as determined from reports in the European Severe
Weather Database (ESWD).

Figure 2. Examples of storm development for two cases within our 340 storm data set, (a–c) for a “weak” storm at 15min
intervals from 09:44 to 10:14 UTC 15 August 2010 and (d–f) for a “severe” storm at 15min intervals from 12:59 to 13:29 UTC
29 July 2013. The location of the storm in Figure 2b is 45.41°N, 1.98°E, while that for the storm in Figure 2e is 45.47°N, 9.34°E.
The latitude and longitude lines are every 0.5° × 0.5°.
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along the track of a given storm, a radius of 1.25° (139 km) was then searched for a QC2-level ESWD severe
weather report in association with a given storm. By hand analysis of severe weather related to individual
storms was also done to verify a storm-ESWD report association.

The work done to produce a good quality database involved considerable time, which is the reason why it
was not possible to create a much larger data set. A human expert manually tracked all growing cumulus
clouds over a 2 h time period to assure that cloud-tracking errors were held to a minimum (along the lines
of the tracking methodology in Lensky and Rosenfeld [2006]), and therefore, no automated tracking was
established in this exploratory study. Similarly, the T-re fields were manually developed for all events and also
cataloged for 2 h. The CI fields were only developed in the 0–45min time period, after which point, when a
cloud formed an anvil top, they could no longer be defined since satellite fields that describe cloud growth
would show no change in the presence of a more static anvil cloud. Subsequently, T-re fields were com-
puted following the methodology of Rosenfeld and Lensky [1998], yet were often not well defined early
in a cloud’s lifetime especially if the cumulus clouds were isolated and if partial pixel filling did not provide
valid retrievals of T and re.

The data processing methodology is schematically shown in Figure 4 in which three different scales in the
Meteosat-8 data were analyzed for all developing storm events: the “cloud scale” (3 × 3 IR pixel box) that
covers only a small region of developing cumulus clouds during CI, the “storm scale” (9 × 9 IR pixel box) that

covers a larger region as a storm grew to
produce an initial anvil cloud, and the
“environmental scale” (51 × 51 IR pixel
box) that covers a meso-β scale
(153 × 153 km) region as a means of
capturing the environment in which
convective storms are developing. This
51 × 51 pixel region was chosen as it
corresponds to a region for which the
influences of advection, convective
instability, and wind shear would influ-
ence storm organization on time scales
of 1–3h [e.g., Anthes et al., 1982; Roberts
et al., 2006]. For all domains, the coldest
pixel in the 3×3 pixel domain defined

Figure 4. Schematic diagram of theMeteosat-8 processing methodology,
with a focus on 3 × 3 pixel “cloud scale” CI fields, 9 × 9 pixel “storm scale,”
and 51 × 51 pixel “environmental” scale. The full data processing
methodology is provided in the main text.
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Figure 3. The 5min trends in five T-re fields and the Tri-Spectral field (see Table 1) over the first 30min of cumulus cloud
development. These growing cumulus clouds are for the eventual (left) “weak” (Figures 2a–2c) and (right) “severe” storms
(Figures 2d–2f). Note that the TG9, T1451, and ReBRTG51 fields are those used within equation (1) [LDASTORM]. See text for
the description of values and trends.
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the center pixel [see Lensky and
Rosenfeld, 2006]. This three-tiered
approach assured that CI and T-re
fields could be computed in appro-
priate ways; specifically, it was not
reasonable to compute T-re fields
over 3 × 3 IR pixel regions since the
Rosenfeld et al. [2008a] methodology
analyzes an ensemble of cumulus
clouds at various altitudes across a
region toward generating a T-re pro-
file, as described above. The T-re
fields possessed increasing value as
isolated clouds grew past the smaller
cumulus cloud scale and as popula-
tions of cumulus clouds at varying
vertical growth/development stages
covered a scene such that the
“space-time exchangeability” con-
cept [Lensky and Rosenfeld, 2006]
applied and full T-re profiles could
be formed. Hence, moving to larger
domains, 9 × 9 Meteosat pixels and
especially 51 × 51 pixels is quite
appropriate when developing T-re

profiles and also allows for the clouds within the satellite imagery to provide information on the convective
response to environmental conditions. Figure 5 presents the T-re fields in an idealized profile, as referred to
throughout this study.

From Table 2, within the 340 storm database, 34 (10%, that is, 0.1 prior probability of having a severe event) of
them later evolved to become defined severe convective storms as they produced large hail, high winds,
and/or a funnel cloud according to QC2-type reports in the ESWD, per the ESWD definition of a severe storm
which include having a tornado, or ≥2 cm diameter hail, and/or measured or estimated surface winds with
velocities ≥25ms�1. Validation of severe classification was also attempted using satellite attributes associated
with severe storms, such as the height of an overshooting top [Bedka et al., 2010] and rapid cloud top expan-
sion rates. Nevertheless, due to the high correlation between satellite-estimated classification of severe
weather and many of the early cloud growth fields, the final choice was to use the “satellite-independent”
ESWD severe weather reports despite the likelihood that reports were missed for several storm events and
therefore do not appear in the ESWD. Thirty-four severe events within our database were associated with a
QC2 ESWD report.

The time-distance criterion used to assign a severe weather event to a CI occurrence, reported within the
ESWD, was that a severe weather report be within 3 h of the initial location of cumulus cloud development
(i.e., our “time 0” for tracking an event or the initial CI time) and within 1.25° (139 km) from the 3 h storm loca-
tion. Lowering these criteria (i.e., extending to larger time differences or distances) resulted in >34 events
being classified as severe; however, the relationships to early cloud development became less well defined,
especially as the time increased beyond 3 h (from time 0) or as the distance extended beyond 139 km (which
resulted in severe weather reports from nearby storms perhaps becoming associated with other
nonsevere events).

Given the variable list in Table 1, a first assessment of physical relationships to severe convection, the original
61 variables was reduced to 47 (the bolded fields in Table 1). The 14 fields removed were variables with too
many constant values [COOLING9, S (multiply9), STBR9, and S (multiply51)], too many missing values
(dSLOPE9*10, CORTBTG9, and TBRTG9), and those fields that were not significant in this study’s context (date,
storm, map, hour, iCENTER, and jCENTER). Using these 47 variables for all events, several forms of analysis were

Figure 5. Illustration of the meaning of the parameters describing the tem-
perature–particle effective radius (T-re) relations from Rosenfeld et al. [2008a].
Here T is in °C and re is in μm. The illustrated parameters consist of Tbase:
temperature of cloud base, approximated by the warmest point of the T-re
relation; Rbase: the re at cloud base; T15: temperature where re crosses the
precipitation threshold of 15 μm (while the 14 μm temperature is used in this
study); TL: temperature where linearity of the T-re relation ends upward, also
termed the “breakpoint”; dTL: temperature interval of the linear part of the
T-re relation; Tg: onset temperature of the glaciated zone; Rg: the re at TG;
TTOP: cloud top temperature.
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performed, specifically to understand the behavior of the field distribution, the evolution of fields over time
(every 5min from 0–45min), and then to assess variable importance and initial performance in a linear
statistical model.

In addition to the analysis of variable evolution, two questions were addressed: (1) what variables were more
or less related to the eventual occurrence of “intense” or severe convective storms? And, (2) what subset of
variables could then be used to predict whether a given area or cluster of growing cumulus clouds would
become severe at some later time over the coming 2–3 h? Toward addressing these two questions, several
analysis methods were applied to quantify the temporal behaviors of individual CI and T-re fields in the
0–45min time frame from the beginning of an event. The statistical analysis described below had initially
been performed on every individual time frame, e.g., first, all 340 “0min” cases alone and then all “5min”
cases, etc. The scope was to understand if there is a better time step than the other, to identify the poten-
tial for severe storm development. Unfortunately, it was soon recognized that 340 storms, with only 34
severe events, were too few to develop a robust statistical model, in particular when a prognostic (two
thirds of data as training sample and one third as validation/test sample) approach was applied.

In order to overcome this problem, a new, second strategy was introduced. In this second approach more
time frames were aggregated together in order to increase the total number of cases. That is, in this second
strategy, not only one time frame was associated with the predictand (i.e., severity of that given mature
storm) but rather a sequence of more time frames (5min cases) were associated to the same predictand,
which was constant during the different time frames. In this methodology, information coming from the
short-time predictor trend can also be retained. The drawback of this method is that the predictor values
are not completely independent from each other, since small time steps only separate them. Hence, not as
much new information is added to the original 340 event database if too few time frames were aggregated.
After testing different aggregation factors, it was found a good compromise aggregating the first six time
frames (from 0min to 25min after the first cell identification), obtaining a total of 340 × 6= 2040 cases, with
204 of them marked as severe. Note that, as will be explained later, the test sample used to validate the
statistical model was built using storm events and days different from those fitted during the training phase.
In this way, a true independence between training and validation samples was assured.

4. Results

For this study, based on the stated goals, the first component of the analysis was to assess the field magni-
tudes between the occurrence or nonoccurrence of severe events, while the second component focused
on the temporal evolution of the fields, specifically how the magnitudes of fields changed with time from
initial CI to the formation of an anvil, and then onward to the evolution to a more mature storm by and
beyond 2 h. For example, stronger events that eventually produced verified severe weather should be asso-
ciated with stronger initial updrafts, and these satellite-inferred updrafts will reach a peakmagnitude at some
point just prior to anvil development, after which cloud top cooling trends will end (or be limited to signa-
tures from intermittent overshooting tops). Understanding the evolution of the fields then helps in the
formation of a conceptual model for using satellite indicators when defining severe (versus nonsevere)
convection in a short-term prediction methodology.

4.1. T-re Field Delineation and Evolution Relative to Storm Intensity

Within our event database weak events were subsequently defined specifically as a cumulus cloud that never
grew deep enough to have a 10.8μm TB< 250 K over the 0–45min period of analysis. In this way, out of the
initial 340 storms, 47 weak events were assigned to a storm intensity of “0.” As noted, 34 severe events got an
intensity value of “1” (or were associated with a QC2 ESWD report), while the remaining cases (259) were
assigned to a predictand value of “0.5” (hereafter referred to as “average” storms). In the analysis of CI events
across the spectrum of intensities, from the weak to severe, simple distributions of field magnitudes can be
formed. The purpose of these distributions is to determine the behavior of the fields related to the physics
of convective storm development, and such that one could use them in a nowcasting algorithm if specific
per-field thresholds were needed. The focus of this analysis will be on the “cumulative” and “multiply” fields
(Table 1) that are presented to demonstrate the progression of T-re fields within a growing convective
cloud. Early in a cumulus cloud’s development, some T-re fields cannot be defined, and hence, the multiply
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fields will be zero. The cumulative fields will however be nonzero from the initial cloud’s growth onward
and increase in value. Once all T-re fields are defined, the multiply fields become nonzero, indicating a
mature convective cloud.

Figures 6a–6f show the multiplicative and cumulative scores for both the 9 × 9 [S (multiply9) and S
(cumulative9)] and 51 × 51 pixel [S (multiply51) and S (cumulative51)] domains (Table 1) as a function of time
from 0 to 45min for all storms, in which the 5min cloud top cooling rates (5min 10.8μm trend) varied over six
different ranges, from <�3°C per 5min to <�18°C per 5min. The storms were analyzed over 45min in
Figure 6 to account for the CI period plus added time for clouds to form initial anvils, which help form the full
T-re profile. In Figures 6a–6f, the 45min time period is presented as nine separate 5min time periods, 1–10.
The score fields are useful as a means of assessing the overall value of the T-re fields in delineating overall
storm intensity. Several interesting features are evident: (1) the multiplied scores on the 51 × 51 domain were
nonzero only from times 2–7 (5–30min), (2) the multiplied scores on the 9× 9 domain were nonzero at the
initial and the last 2 times (40 and 45min), (3) the cumulative scores on the 51 × 51 domain gradually
decreased after time 7 (30min) and were seen to increase from 1.5 to near 2.5 from the<�3 to<�18 events,
and (4) the cumulative scores on the 9 × 9 domain generally remained in the 2.0–2.5 range and also increased
by ~10% between the weakest and strongest 10.8μm TB cooling rate events. The behavior of the 9 × 9
multiplied score is due to the need for all fields that comprise the score to be nonzero, or that a mature, large
(comprising several 3 km IR pixels) cumulus cloud be present that exhibits significant cloud top glaciation and
growth, which only happened after time 8 (35min).

The next components of this study involved assessing the relative importance of the 47 variables and then to
determine howbest to use a subset of these fields to predict at early stages of cloud growth future storm intensity.

4.2. Predictor Variable Importance and Model Development

The first statistical method applied in the study was a regression method. Using the weak, “average,” and
severe event definitions of storm intensity, the database was processed with the “leaps” package in the R
Project for Statistical Computing (www.r-project.org) to perform an exhaustive search for the best subsets of
the candidate variables in a vector X for predicting an outcome Y (storm intensity) with a linear regression,
using an efficient branch-and-bound algorithm. Results from this regression study showed that the total
number of cases, even after aggregating six time frames together, were not sufficient to give significant
results on the independent test data set. Moreover, the weak events were not statistically independent from
all the satellite fields (by definition) and that introduced spurious correlation between some predictors and
the predictand. So that method was abandoned because the definition of weak events was based on the
value of some predictors, which is misleading.

The second statistical method used was a classification method based on simple linear discriminant analysis
(LDA) and also implemented in the R language to discriminate the severe events (labeled as class 1) from all
the other events (all labeled as class 0). The database developed here was shown to be sufficient to perform a
bivariate analysis, useful to compare the different candidate predictor performances, and also sufficient for a
simple prognostic multivariate approach, joining together two or three predictors. After initial attempts were
made to use nonlinear models to assess variable importance, several more simple evaluations were done
using a bivariate LDA. When looking for the predictor “best threshold” to discriminate between two classes,
many different verification scores could be optimized. It was decided to maximize the Peirce skill score
(“maxPSS”), following that suggested by Manzato [2007]. Prior to performing the LDA, the data sets were
combined over the first six time periods (from 0 to 25min) of cloud growth, forming then a larger database
toward understanding how early cloud growth signatures relate to later storm intensity (as described above).

Within the bivariate LDA framework, a simple diagnostic procedure was performed, i.e., without dividing the
database in training and validation. Results for the first best 11 predictors are shown in Table 3. All other
predictors have maxPSS lower than 0.13. The best two predictors from this diagnostic bivariate LDA are
TG9 and T1451 that correspond to the response of cloud microphysical character to the presence of a
strong in-cloud updraft, along the lines of Lensky and Rosenfeld [2006] and Rosenfeld et al. [2008a,
2008b]. Rapid cloud growth corresponds to a delay in particle growth, leading to colder temperatures
of the first 14 μm particles and also lower TG values (owing to smaller particles freezing at temperatures
closer to the homogenous freezing point of water [Rosenfeld and Woodley, 2000]).
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Variable “importance” is a concept very well defined in bivariate analysis, where after choosing a performance
“metric,” it is easy to rank each variable’s goodness according to that specific metric. But, variable importance
is a much more complex concept when doing a multivariate analysis, because different variables that, when
taken alone, may have high performances, and model performance may not increase when different variables
are used together. Highly correlated variables (even nonlinearly) do not bring new independent information into
a multivariate model but rather risks introducing noise into the results.

In our database, many satellite-derived candidate predictors have high correlations. Notable examples
include ReGLAC9 and SREG9 (R =�0.98), ReBRTG9 and SREBR9 (R =�0.90), TG9 and STG9 (R =�0.85), and T149

Figure 6. Score values for “cumulative on the 9 × 9 pixel domain,” “cumulative on the 51 × 51 pixel domain,” “multiplied
scores on the 9 × 9 pixel domain,” and “multiplied scores on the 51 × 51 pixel domain” for clouds with varying 5min
cloud top cooling rates, from (a) <�3°C to (f) <�18°C. Here “score” refers to the cumulative score (whether summed or
multiplied) on the 9 × 9 pixel “storm scale” or 51 × 51 “environmental scale,” of the five fields SdSLOPE, STG, STBR, SREG, and
SREBR, as defined in Table 1. In Table 1, these summed or multiplied fields are S (cumulative9), S (cumulative51), S
(multiply9), and S (multiply51). See text for interpretation of results.
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and TB9 (R = 0.83). For this reason, in
a multivariate approach it is impor-
tant to implement a strategy for
selecting a small subsample of sta-
tistically independent predictors,
because too many predictors could
introduce noise and increase data
overfitting. In order to avoid overfit-
ting, the original database was
divided in training and test sam-
ples. Since different clouds of the
same day could have been close in
space to each other and hence very
similar, it was decided to use all

clouds of three specific days (1 July 2012, 7 July 2012, and 29 July 2013, for a total number of 648 cases)
to form the “test sample,” while all the cases from the remaining 3 days formed the “training sample”
(having a total of 1392 cases). In such a way a true independence of the test sample was obtained.

Prior studies have suggested preprocessing the predictors before developing a multivariate statistical model.
This is particularly true when the model parameters are found by iterative approximations, starting from
random initialization, as done in nonlinear methods. For example, Masters [1995] states that “…most
nonlinear models implicitly or explicitly assume that variables having large variation are more important than
variables having small variation.” But, preprocessing can be very important also in linear classification
methods, when the relation between each predictor and the event occurrence is nonmonotonic. As
discussed in Manzato [2007], transforming each candidate predictor into its empirical posterior probability
(EPP) is an optimal “preprocessing” technique, in particular for nonmonotonic variables, because, when
performing this transformation, all transformed variables have the same meaning and domain; that is, all
of them represent their probability (0,1) of having an event occurrence. As described in Manzato [2005],
and also done in this study, the original candidate predictor values were transformed into their EPP of having
a severe event. In practice, each predictor domain is divided in 21 equal bins and the EPP transformation is
obtained by fitting the ratio between the number of severe event cases and the total number of cases inside
each bin of the predictor distribution domain. Examples of the EPP transformation are shown in Figures 7a and
7b, for the T1451 (Figure 7a) and ReBRTG51 (Figure 7b) predictor variables. While the ReBRTG51 transformation is
quite linear, the T1451 is much more peculiar, being nonmonotonic. Figure 7 provides us information on
how the different candidate predictors (spanning very different domain ranges) could be nonlinearly
and nonmonotonically transformed into probabilities, that are much more comparable and hence are
easier to combine together in a multivariate statistical model.

After this variable preprocessing, a prognostic bivariate analysis was performed. Instead of looking for the
best threshold for each variable, a probability threshold of 0.10 (same as the severe weather prior
probability) was chosen for all the predictors transformed into their EPP. The only six variables having a test
maxPSS equal or larger than a minimum PSS threshold (set to 0.10) are listed in Table 4. In Table 4, two highly
correlated predictors are seen (SREG9 and STG9 are very correlated with TG9). After removing them, the best
predictors were the posterior probability associated to T1451 and TG9, followed by those associated to
TTOP51 and ReBRTG51. The physical reasons for the importance of these variables are along the lines of that
already stated above (for T1451 and TG9), while low TTOP51 values imply the presence of already deep convec-
tive clouds in the mesoscale region of developing cumulus clouds. The physical relationship between severe
weather and the ReBRTG51 variable is that strong updrafts produce microphysical particles with anomalously
small sizes, as compared to what occurs in more common convective clouds [Rosenfeld et al., 2008a].

Next, it was decided to use an exhaustive search of all the possible combinations of these four variables that
are six combinations of two of them, four combinations of three of them, and one combination using all four
variables. Out of all these 11 different multivariate prognostic models, the variable subsets chosen by the 4
models showing the best performances are listed in Table 5. Considering the performances in Table 5, it is pos-
sible to see that the last two LDAmodels are slightly overfitting the training data set (training score significantly

Table 3. The 11 Best Predictors of a Simple Diagnostic Bivariate Analysis

Predictor Cases Not Missing Discriminant Condition maxPSS

TG9 2040 <�24.6 0.22
T1451 2014 <�17.0 0.22
STG9 2040 >0.16 0.21
TTOP51 2040 <�47.8 0.19
ReTOP51 2040 <36.6 0.18
SREG9 2040 <0.88 0.18
TTOP9 2040 <�28.9 0.17
TB9 2040 <�6.9 0.16
ReGLAC51 1776 <31.3 0.16
T149 1961 <23.0 0.15
ReBRTG51 2040 <21.8 0.15
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larger than the test score). For that
reason the second model was chosen
to illustrate in more details the perfor-
mance obtained (bold “0.31” in
Table 5). That model can be described
by the following equation:

LDASTORM ¼ 18:205 EPP TG9ð Þ
þ 8:293 EPP T1451ð Þ
þ 21:164 EPP ReBRTG51ð Þ:

(1)

Severe weather is expected if
LDASTORM ≥4.755.

Considering Figure 8 as an illustration
of the LDA posterior probability ver-
sus LDASTORM, i.e., the model output
of equation (1), it is possible to see
that the discriminant threshold
(4.755) that maximizes the PSS of
the classification model corresponds
to a posterior probability of event
occurrence equal to 0.08. Apart from
the optimized score (maxPSS), other
more commonly used classification
performances are reported (following
the definitions of Jolliffe and
Stephenson [2003]) in Table 6, for the
training and test samples, respectively.

As expected for rare events (remem-
ber that in our problem the prior
probability is only 0.1), maximizing
the PSS leads to an overforecast; that
is, the frequency BIAS is larger than 1
(4.7 and 3.8, respectively, with
respect to the training and test sam-
ples, as shown in Table 6). This is
due to the fact that PSS penalizes

much more the “rare events” than the “very frequent” nonsevere storm events, as in the case for the present
study. Toward seeing how the model performance varies with respect to the chosen 4.755 threshold, consider
the situation with a BIAS=1, which is very informative to then analyze the relative operating characteristic
(ROC) diagram [Swets, 1973], shown in Figure 9. From this ROC figure it is possible to see that the three-variable
model described in equation (1) does not suffer of an overfitting problem (test and training ROC lines overlap),
which should be the first concern with any statistical model. Therefore, equation (1) can be considered a

useful way to diagnose and predict
near-term (0–3h) severe convective
storm development when early cloud
growth (0–25min) satellite-based
cloud observations are considered.

It is important to note that equation
(1) applies to the Rosenfeld et al.
[2008a, 2008b] T-re framework as a
means of combining TG9, T1451, and
ReBRTG51. Prior to applying equation

Table 4. Maximum Pierce Skill Score (maxPSS) for the Training and Test
Sample in a Prognostic Bivariate Analysis as Developed in This Study

Transformed Predictor Training maxPSS Test maxPSS

EPP (TTOP51) 0.27 0.13
EPP (T1451) 0.26 0.21
EPP (TG9) 0.20 0.24
EPP (STG9) 0.20 0.22
EPP (ReBRTG51) 0.19 0.10
EPP (SREG9) 0.14 0.23

Figure 7. Examples of the EPP transformation for (a) the T1451 and (b)
ReBRTG51 predictor variables. See text for description of results.
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(1) for LDASTORM, the EPP transformation needs to be applied to the original values as

EPP TG9ð Þ ¼ 0:058 – 0:00175 � TG9; (2)

EPP T1451ð Þ ¼ 0:069 þ 0:00030 � T1451 þ 8ð Þ2; (3)

EPP ReBRTG51ð Þ ¼ 0:087 þ 0:01220 � ATAN 1:005 þ 0:970 � ReBRTG51ð Þ: (4)

Once done, equation (1) can be computed and a comparison to the 4.755 threshold is made in order to
forecast severe or not severe events.

As an example, Figure 10 shows the LDASTORM distribution for all 34 severe storm and all 305 nonsevere events
(sum is only 339 cases because one nonsevere case had missing T1451), taken 25min after first CI identification
(one frame only analysis). Note that for Figure 10 there is no division in training/validation, so also, the cases used
to develop the model are included. Table 7 shows the corresponding contingency table, obtained using the
4.755 threshold. Figure 10 and Table 7 demonstratewhat a forecaster would see from the analysis of satellite ima-
gery 25min after CI initiation through the application of the model given by equation (1).

5. Conclusions

The study presented here examined the characteristics and importance of 47 satellite-based fields from the
Meteosat-8 geostationary satellite over Europe that describe growing convective clouds (CI fields) and cloud
top microphysics (so-called T-re fields) for a range of storm intensities. The main goal of this study was to
determine the unique signatures in the early growth stages of cumulus clouds for storms that later produced
a severe weather report and contrast them with storm signatures that did not produce severe weather. A
follow-on goal was to develop a simple model using significant satellite fields to help predict which storms

will become severe over the coming
2–3 h after CI. A total of 340 convec-
tive storm clouds were examined,
from the cumulus cloud/early
growth stage (0–45min) on to the
more mature cumulonimbus cloud
stage (from 45min to 2 h), over cen-
tral Europe on 6 days from 2010 into
2013. Within this sample data set, 34
convective storms were associated
with a QC2-quality severe weather
report in the ESWD. A severe
weather event was either a report
of large hail, high surface winds, or
a tornado. Each convective storm
was examined using 5min resolu-
tion Meteosat-8 IR channel data,
and as a result, a total of 3400 cases
(or individual times) were available
for analysis.

Table 5. Maximum Pierce Skill Score (maxPSS) for the Training and Test Sample in a Prognostic Multivariate Analysis as
Developed in This Studya

Variables Used Training maxPSS Test maxPSS

EPP (TG9) + EPP (T1451) 0.27 0.25
EPP (TG9) + EPP (T1451) + EPP (ReBRTG51) 0.29 0.31
EPP (T1451) + EPP (TTOP51) + EPP (ReBRTG51) 0.35 0.28
EPP (TG9) + EPP (T1451) + EPP (TTOP51) + EPP (ReBRTG51) 0.36 0.27

aThe bolded “0.31” maxPSS delineates the best combination of three predictors, which forms the linear discriminant
analysis (LDA) prediction model (equation (1)).

Figure 8. Illustration of the LDA threshold versus LDASTORM, i.e., the output
of model in equation (1), as described in text.
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Beginning with 47 satellite variables,
several approaches were used to (1)
determine where nonredundant
information existed across variables
and (2) identify a small subset of
fields that could be applied within a
short-term satellite-based prediction
algorithm. These goals were accom-
plished in part using a prognostic
approach, that is, by dividing the
entire data set of cases into training
and testing samples. The present study
stopped short of applying the
LDASTORM model to a new, larger set
of storm cases, or to apply to model
to a real-time data set, which is the
subject of a follow-on research project.

The main conclusions are summar-
ized as follows: (1) rapidly growing
cumulus clouds in advance of a
severe storm exhibit unique (i.e., very
low to below �25°C) glaciation tem-
peratures (TG9) compared to when
only rain showers occur. (2) The
environmental/meso-β scale (51×51

Figure 9. Receiver operating characteristic (ROC) curve for the linear discrimi-
nant analysis model with three predictors, cloud top glaciation temperature on
the 9 × 9 pixel “storm scale” (TG9), the minimum temperature where the 14μm
particle size occurs over the “environment scale” (T1451), and the particle
effective radius at the breakpoint of the T-re line (ReBRTG51).

Table 6. Contingency Table and Derived Scores for the Three-Variable Model of Equation (1) Computed on the Training
and Test Samplesa

Training Sample
Contingency table
A 93 B 517
C 38 D 718
Derived scores
POD= 0.71 Probability of detection: forecasted events really happened over total events
HIT = 0.59 HIT rate: forecasted event/nonevent over total cases
FAR = 0.85 False alarm ratio: forecasted event not really happened
POFD = 0.42 Probability of false detection: false alarm over total nonevents
BIAS = 4.66 Forecasted events over total events
TS = 0.14 Threat score: forecasted events really happened over total forecast less no cases
HSS = 0.11 Heidke skill score: forecast system over random system
PSS = 0.29 Peirce (Kuipers) skill score: forecast system over climatology
ODDS = 3.40 Odds ratio

Test Sample
Contingency table
A 50 B 221
C 22 D 355
Derived scores
POD= 0.69 Probability of detection: forecasted events really happened over total events
HIT = 0.63 HIT rate: forecasted event/nonevent over total cases
FAR = 0.82 False alarm ratio: forecasted event not really happened
POFD = 0.38 Probability of false detection: false alarm over total nonevents
BIAS = 3.76 Forecasted events over total events
TS = 0.17 Threat score: forecasted events really happened over total forecast less no cases
HSS = 0.14 Heidke skill score: forecast system over random system
PSS = 0.31 Peirce (Kuipers) skill score: forecast system over climatology
ODDS = 3.65 Odds ratio

aFor the training sample, there are 1392 different cases, with 26 forecastmissing values, with the total evaluated cases being
1366. For the test sample, there are 648 different cases, with 0 forecastmissing values, and the total evaluated cases being 648.
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pixel region)/cloud ensemble or arith-
metic average of the temperature
where the 14μm particles (T1451) are
first seen are also unique, implying
that precipitation begins at higher
altitudes when updrafts are stronger
in advance of severe storms. (3) The
environmental/meso-β scale (51 × 51
pixel region)/cloud ensemble or
arithmetic average re values at the
T-re sounding breakpoint temperature
(ReBRTG51) noting that stronger updrafts
produce microphysical particles with
anomalously small sizes, as compared
to what occurs in more common con-
vection. Again, Figure 3 shows the
behavior of these three fields for one
weak and severe storm event.

The three variables chosen for the
final model are the empirical posterior
probability of TG9, T1451, and ReBRTG51.
As noted above, the physical reasons
for the importance of these variables
are that strong stormswill have anom-
alously low temperatures (5–10°C
colder than surrounding storms) where
the first 14μm particle (T1451) and
where particles first freeze (TG9). The
physical relationship between severe
weather and the ReBRTG51 variable is
that strong updrafts produce micro-

physical particles with anomalously small sizes and especially trends to lower re values, as compared to
what occurs in more average convection. The performances of the three-variable statistical LDA model
(equation (1)), illustrated by Figures 9 and 10 and by Tables 6 and 7, may not be sufficiently high for an
operational implementation of that model, but the statistical methodology implemented in this work should
give much better results once a larger data set could be provided via an automated tracking procedure,

Figure 10. Distribution of LDASTORM values computed using equation (1)
(and EPP transforms in equations (2)–(4)) for the 340 storm data set used in
this study at frame 6 (25min after CI). Solid line is the likelihood probability
for the nonsevere cases, gray line is the likelihood probability for the 34
severe cases, and the dashed line is the threshold found to maximize PSS
during the model development. Note that there is no division in training/
validation, so also the cases used to develop the model are included. The
“a,” “b,” “c,” and “d” variables are the contingency table coefficients, and “Nyes”
and “Nno” are the number of observed event and nonevent cases. This figure
demonstrates the skill of a forecasting method based on the analysis at 25min
after CI of satellite imagery through the model of equation (1).

Table 7. Contingency Table and Derived Scores for the Three-Variable Model of Equation (1) Computed on All the 339
Cases at Frame 6 That Is 25min After CI Identificationa

All Cases at 25min
Contingency table
A 30 B 143
C 4 D 162
Derived scores
POD= 0.88 Probability of detection: forecasted events really happened over total events
HIT = 0.57 HIT rate: forecasted event/nonevent over total cases
FAR = 0.83 False alarm ratio: forecasted event not really happened
POFD = 0.47 Probability of false detection: false alarm over total nonevents
BIAS = 5.09 Forecasted events over total events
TS = 0.17 Threat score: forecasted events really happened over total forecast less no cases
HSS = 0.15 Heidke skill score: forecast system over random system
KSS = 0.41 Kuipers skill score: forecast system over climatology
ODDS = 8.50 Odds ratio

aThese data include also those used to develop the statistical model.
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that is, the scope of future works, which will involve the use of much larger training and testing databases, on
the order of thousands of events in size, and incorporating information from operational numerical weather
prediction models (e.g., the high-resolution rapid refresh) for environmental conditions.

Given the general degree of nonuniqueness seen when evaluating field differences across storm intensity,
this study likely shows the practical limitations of using 2–4 km resolution IR data from Meteosat and other
geostationary satellites when nowcasting severe storms in the 1–2 h time frame, something that will be
improved as the spatial resolution on geostationary satellites improve over time. However, the improved
satellite-based CI nowcasts that utilize statistical learning models can be employed within existing systems
that monitor and track convection for a variety of users. Use of the methods described here will afford an
added capability to not only nowcast CI but also provide predictions for which storms will later become
severe, following on the study by Rosenfeld et al. [2008b]. Short-term prediction systems that can be improved
by such enhanced satellite-based information on growing cumulus clouds include the GOES-R 0–1 h CI algo-
rithm [Mecikalski et al., 2015], the Corridor Integrated Weather System [Iskenderian et al., 2010, 2012], CbTRAM
[Zinner et al., 2008], and the Rapidly Developing Thunderstorm [Autones, 2012]. Similarly, the AutoNowcaster
[Mueller et al., 1993, 2003; Wilson et al., 2010; Roberts et al., 2012] for CI and storm predictions; the
Collaborative Adaptive Sensing of the Atmosphere Distributed Collaborative Adaptive Sensing network
[Ruzanski et al., 2011] for storm cell evolution and tracking; the Warning Decision Support System–

Integrated Information [Lakshmanan et al., 2007] Thunderstorm Identification, Tracking, Analysis, and
Nowcasting [Dixon and Wiener, 1993] algorithm; the Canadian Radar Detection System [Joe et al., 2003];
and the Thunderstorm Strike Probability Nowcasting Algorithm [Dance et al., 2010] are systems that could
be enhanced using added satellite data-processing rules. The Global/Regional Assimilation and Prediction
System–Severe Weather Forecast Tool [Hu et al., 2007; Wilson et al., 2010], which processes fields from NWP
models as a means of forming high-quality analyses and modeled initial conditions [Feng et al., 2007], may
significantly benefit from the inclusion of the satellite-based fields discussed in this study, for storm initiation
and tracking purposes. Subsequently, results from this study may help further our understanding of the
dynamic CI process, which is of high interest [Wilson et al., 1998; Ziegler et al., 2007; Lima and Wilson, 2008;
Wakimoto and Murphey, 2009], especially given the correspondence between correct short-term forecasts
of convective storms and overall NWP forecast skill [Brooks et al., 1992].

Another important future goal is to apply this research to theGOES-R generation of geostationary satellites and the
Advanced Baseline Imager data set as well as to the Meteosat Third Generation (MTG) Flexible Combined Imager
(FCI). For GOES-R, these improvements fall into four themes: (1) increased visible channel resolution to 500m, IR
spatial resolution to 2 km, and increased time resolution to 5min will help automated algorithms discern cumulus
clouds better than is possible with the current GOES satellites. This increased resolution will afford enhanced now-
cast lead times for CI. Furthermore, the use of 5min resolution data will improve the tracking of small-scale cumu-
lus clouds. The higher temporal resolution will also facilitate improved measures of the rates of change of cloud
properties, which should further increase CI nowcast accuracy. (2) The additional channels (16 versus the
present-day 4) will help improve our ability to determine cloud top glaciation and forming of T-re retrievals.
Having the 8.5 and 12.3μmchannels, as well as three water vapor channels (6.19, 6.95, and 7.34μm, instead of just
the 6.5μmchannel) will greatly improve our ability to detect ice versus water particles [see, e.g., Strabala et al.,
1994]. The added 10.35 μm channel on GOES-R (in addition to 11.2 μm) will also improve estimates of
cloud height. All of these will be critical satellite indicators of rapidly growing, deep convection. The
MTG FCI will possess 1 km resolution IR channels and therefore assist in the early detection of convective
clouds. Lastly, GOES-R will provide 30 s resolution data, with MTG providing 2.5min resolution fields, data
sets that will be used when nowcasting CI and detecting early signature of severe storms.
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